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Abstract
Mycobacteria belong to a genus which has membership ranging from saprophytes to
deadly pathogens that cause several infectious diseases affecting a large population of
the world. Among them, tuberculosis and leprosy are the major granulomatous
mycobacterial diseases. While there are successes and failures in the fight against these
infections, mechanisms of pathogenesis continue to be a challenge to clinicians and
biologists alike. Though it is known that both host and bacterial factors are important in
the pathogenicity versus protection, all the triggers and responses are not known.
Among various bacterial factors, small heat shock proteins (sSHPs) could be important
targets for drug development, immunomodulation and serodiagnosis. sSHPs are the
molecular chaperones that are believed to act as mantle for the mycobacteria against
host's immune attack and facilitate the survival of pathogen in host body. Best studied
small heat shock proteins in are sSHP16.3 and Acr2 while in , it is
18 kD protein antigen. In this review, works on various aspects of small heat shock
proteins which fall in 10 to 19 kD range have been summarized and some thoughts about
future road-map have been put into.
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Introduction
In the hierarchy of microbial evolution,

mycobacteria represent a distinct group of
microbes. This single genus mycobacterium
has more than 130 known species and 11
subspecies out of which nearly one third are
to be associated with human diseases (Katoch
2004, Katoch et al 2007, Euzeby 2008).

Mycobacteria are acid fast, have a lipid rich
cell wall and high GC contents. Various
attempts have been made to taxonomically
classify the mycobacteria on the basis of
growth rate, pigmentation, nutritional
requirements, pathogenesis and virulence
(Runyon 1959, Goodfellow et al 1982).
Taxonomic classification shows genus
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mycobacterium is very close relative of some
other genera such as
and (Holt et al 1994).

,
and are among the

slow-growing obligate human pathogens
which have been extensively studied in past
two decades (Tappeiner and Wolff 1999).
Among more than 40 mycobacterial species
that have been reporeted to cause infections
in humans, imporatnt slow growers include

on one hand and
and

(rapid growers) on other hand
(Katoch 2004 , Katoch et al 2007) .

(MTB) and
predominantly reside in

macrophages and Schwann cells are the
etiological agents of tuberculosis and leprosy
respectively.

The virtual hallmark of tuberculosis,
leprosy and other diseases caused by slow
growing mycobacteria is the formation of
granuloma in the infected host. It is thought
that granulomas are formed in the host
system in response to stimulus by
components of persistent intracellular
pathogens and finally resulting from
accumulation of macrophage-derived
epitheloid histocytes, Langhans' giant cells.
These cells are further circumscribed by
layers of lymphocytes and extracellular
matrix. The process may result in necrosis
which is generally associated with formation
of caseous granulomas (Tappeiner and Wolff
1999, Peters and Ernst 2003). Understanding
the evolution of mycobacterial granuloma is
very important in for improving the
treatment and also for finding newer tools for
prevention of diseases.

An important feature of evolution of
tuberculosis as a disease is the prolonged
latency during which its causative pathogen
is able to survive for long periods sometimes

Nocardia, Rhodococcus,
Corynebacterium

Mycobacterium tuberculosis Mycobcterium
leprae Mycobacterium bovis

Mycobacterium intracellulare
Mycobacterium fortuitum Mycobacterium
chelonae

Mycobacterium tuberculosis
Mycobacterium leprae

in inflamed and necrotic tissues in pulmonary
granulomas (Dannenberg 1993, Wayne 1994).
The dormancy and persistence are thought to
be linked to reactivation of disease/ relapses.
However, the mechanisms concerned to the
entry, persistence, dormancy, viability and
reactivation of and
the factors facilitating the pathogenesis of
tuberculosis are still not fully understood.
Similarly, picture has not been clear in the
case of leprosy.

After unravelling the complete genome
sequence of and by
Cole and coworkers in 1998 and 2001, new
avenues have been opened in the
mycobacteriology which could provide a
deep insight into the understanding the
mechanisms and factors associated with the
development of mycobacterial diseases. How
mycobacteria survive inside the granulomas
or caseous lesions, what are the responsible
factors for persistence and dormancy, what
are the virulence factors and in what way
mycobacteria nullify the antimicrobial action
of host and which biomolecules and genes
contribute in the host-pathogen interaction
can be better dissected with new knowledge
about genomes of these pathogens, humans
and also experimental hosts like guinea pigs/
mouse.

A large amount of data has been
generated about host and bacterial factors
involved in the virulence/ pathogenesis
mechanisms of mycobacterial diseases. It is
thought that when enters into
the macrophages, specific protective immune
system of host is activated. As a consequence,
various effector molecules like IFN- and
TNF- are released which synergistically
govern the release of reactive oxygen and
nitrogen intermediates (ROIs and RNIs) such
as H O and NO. While the physiological
significance of ROIs in the protection of host
against MTB is well established, the role of

Mycobacterium tuberculosis

M. tuberculosis M. leprae

M. tuberculosis




2 2

232 Jee et al



233Small Heat Shock Proteins and Mycobacterial Diseases

ROI is not fully clear. In addition to these
mediators, Toll Like Receptors (TLRs) are
important factors that take part in the innate
immunity (Flynn and Chan 2001). An
interplay of Th1 (IFN- ,TNF- , IL-2) and Th2
(lL-4, IL-I0) mediated cytokines is believed to
have important roles in the development of
cell mediated immune response against the

attack (Orme et al 1993, Rook
and Hernandez-Pando 1996). and

studies shows that a wide range of
chemokines such as MCP-l, MCP-3, MCP-5,
MIPl- , MIP- MIP-2, IP-10 and RANTES are
produced when immune cells encountered

(Orme and Cooper 1999). Not
only the immunological components
contribute in the localization or spread of
these infections within the body, various
genes and their products are also a major
regulator of pathogenesis. Several bacterial
genes have been identified that can affect the
cascade of infection largely. Amongst these
genes, (Wei et al 2000), (Yuan et al
1996), members of two component system
(TCS) (Cole et al 1998), sigma factors
(Manganelli et al 1999, 2004) are most
important candidates which facilitate the
survival of MTB within macrophages. There
is a long list of hypothetical virulence factors
which may be directing the degree of host-
pathogen interaction and virulence of MTB
inside the host. Members of ESAT-6 family,
Antigen 85 Complex, LAM are the well
characterized virulence factors while HbhA,
OmpA , IdeR are highly suspected virulence
factors of MTB whose precise role has to be
determined (Smith 2003). Laminin-binding-
protein (LBP) is an important virulence factor
of (Shimoji et al 1999). In this
context, small heat shock proteins (sHSPs)
whose molecular weight ranges from 10-19
kD are considered promising molecules that
may protect the pathogens against the killing
attack of host (Narberhaus 2002, Macario and
Macario 2005). These may be targeted to
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develop new strategies for the termination of
life cycle of mycobacteria and could be used
in anti-TB drug development. This review
concisely examines the inherent relationship
between small heat shock proteins and
mycobacterial diseases.

Small heat shock proteins (sHSPs) are
among the least understood molecular
c h a pe r o ne s wh i c h h a ve at t r a c t e d
considerable attention from microbiologists
and molecular biologists over the past decade
because of their promising features and
apparent functions. sHSPs are ubiquitous in
nature and widely found in both prokaryotes
and eukaryotes as surface antigens forming
one of the major groups of heat shock proteins
or stress proteins (Lindquist and Craig 1988).
Heat shock and other form of stress are key
factors which may modulate the expression
of sHSPs genes to a great extent (Morimoto et
al 1990). Members of sSHPs protein family are
characterized by evolutionarily conserved
alpha- crystallin domains which consist of a
stretch of 90-100 amino acid residues (de Jong
et al 1993). It is hypothesized that this alpha-
crystallin domain has many -strands and
form the classical seven - -strand Ig like fold
due to which it has shown close proximity
with the immunoglobulin superfamily
(Mornon et al 1998). The sequence analysis of
sHSPs shows that the conserved crystallin
domain is flanked by a highly variable N-
terminal region and a more conserved short
C-terminal extension (Auqusteyn 2004).
Molecular mass analysis of sSHPs revealed
that sHSP monomers range from 12 to 43 kD
(Narberhaus 2002) and they assemble into a
large oligomeric complex consisting of 9 to
>30 subunits and and it
depends on the class of sSHP (vanMontfort et
al 2001). The family sHSPs are much less

Small heat shock proteins: Structure and
Function
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conserved than the other families of HSPs
(such as HSP60, 70 and 90) (de Jong et al
1993). Available evidences suggest that the
sHSPs are functionally molecular chaperones
facilitating the suppression of aggregation
of denaturing proteins and their refolding
during the course of stress conditions (Table 1
and Table 2) (Narberhaus 2002) but what
will be their physiological and clinical
significance is yet to be answered. It has
been hypothesized that the members of

-crystallin family are important for the
maintenance of eye lens transparency
and prevent the cataract in vertebrates
(Brady et al 1997) as well as play a significant
role in the regulation of programmed cell
death (Bruey et al 2000).

has two small
heat shock proteins : Acr1 ( -crystallin
related protein 1 or HSP16.3/16 kD
antigen/HspX) encoded by gene and
Acr2 (HrpA) encoded by respectively.
Various factors have been identified which
affect the expression of both small heat shock
protein encoding genes (Table 2) (Kennaway
et al 2005). In the coming section the
importance of both these genes has been
discussed separately.

small heat
shock proteins 16.3 (MTB sHSP16.3) was
initially identified as a 14 kD immuno-
dominant antigen (Verbon et al 1992). Later it
has been characterized to be a molecular
chaperone that prevents the aggregation of
denaturing proteins and misfolding of
nascent peptides under different stress
conditions (Chang et al 1996). sHSP16.3 is a
stable protein (Hu and Coates 1999) belongs
to the - crystallin family or - heat shock
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Small Heat Shock Protein 16.3 (sHSP16.3)
/Acr 1

Mycobacterium tuberculosis
Mycobacterium tuberculosis

hspX
acr2

Mycobacterium tuberculosis

protein ( -HSP) superfamily (Valdez et al
2002). It is synthesized at a low level in
logarithmic or exponential-phase cultures,
but its synthesis increases markedly during
the transition from log phase to stationary
phase. This protein becomes one of the most
abundant proteins in stationary- phase MTB
(Yuan et al 1996).

The cellular localization of MTB
sHSP16.3 is unknown till date, although it has
been identified as a major membrane protein
(MMP) having lipophobic properties (Lee et
al 1992), which seems to be present outside of
the cell wall of mycoabcterium (Schoningh et
al 1990, Verbon et al 1990). It is not a secreted
protein (Abou-Zeid et al 1988). After
performing the electron microscopic study,
Cunningham and Spreadbury (1998) suggest
that sHSP 16.3 may be playing a major role of
in the cell wall thickening and could be used
as a drug target.

The structural organization of sSHP16.3
has been extensively studied. Many-a-study
reveal that sSHP16.3 uses trimer as a building
block of its synthesis and exists as nonameric
complex consisting of trimers of trimers
whose calculated molecular mass is 16,277 D
(Chang et al 1996, Abulimiti et al 2003). This is
consistent with the earlier report made by
Kolk et al (1989) which described molecular
mass of 14 kD protein is to be 16,000 D. On the
other hand, Kennaway et al (2005) reported
that Acr1 is a dodecameric assembly formed
from a tetrahedral arrangement of monomers
and dimer is the building block of its
constitution. MTB sHSP16.3 has significant
homology with proteins of alpha-crystallin
superfamily and is composed of 144 amino
acid residues (Verbon et al 1992). Like other
members of sHSPs/alpha-crystall in
superfamily proteins, MTB sHSP16.3 has
characteristic -crystallin conserved domain
of about 85 residues long which is flanked by
a nonconserved N-terminal region of about
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41 residues and followed by a more
conserved C- terminal extension of about 16
residues long stretch (Leroux et al 1997,
Narberhaus 2002).

The chaperone activity is a characteristic
feature and an important function of sHSPs
which has been extensively studied during
the last two decades. Initially alpha-crystallin
protein was investigated for its chaperone
function. Later various attributes of MTB
sHSP16.3 were studied. The first work on
chaperone activity of MTB sHSP16.3 was
published by Chang and coworkers in 1996.
They tested this heat shock/stress induced
protein for its chaperone activity using pig
heart citrate synthase (CS) as a substrate. The
study clearly indicates that the 16 kD antigen
can function as molecular chaperone
by inhibiting the heat induced aggregation of
citrate synthase at 39.5 C effectively. Several
studies showed that chaperone activity of
MTB sHSP16.3 is exclusively temperature
dependent. A phase change in sSHP16.3
occurs at approximately 60°C. This change
directs the removal of a structural energy
barrier which eventually enhances the
functioning of chaperone machinery (Mao et
al 2001). The chaperone activity of MTB
sHSP16.3 is also affected in a range of
physiological temperatures (25 to 37.5°C) but
during such condition, its native oligomeric
complexity is not affected. Moreover, with
the elevation of temperature, sHSP16.3
nonamer exposes its higher hydrophobic
surfaces (Fu and Chang 2004) and after
dissociation into smaller momomers,
accelerates the chaperone like activity by
binding aggregation - prone substrates (Fu et
al 2003). These are evidences which show that
the chaperone activity of MTB sHSP16.3 is
independent of the effects of ATP (Chang et al
1996, Yang et al 1999), however, Valdez and
coworkers (2002) reported that ATP plays a
pivotal role in the chaperone activity of MTB

in vitro

o

sHSP16.3 by protecting it from proteolytic
attack of chymotrypsin and ATP enhances
the chaperone effect by two fold. Despite this
information, the biological importance of
chaperone modulation by ATP influx and
temperature is still unknown.

Kingston et al (1987) were the first to
study the immunological activity of
recombinant 14 kD antigen of MTB. They
showed that 14 kD antigen is capable of
generating strong cell mediated immune
(CMI) response and induces delayed type
hypersentivity (DTH) reaction in mice and
guinea pigs model. Several works have been
carried out in the past to test the diagnostic
accuracy of 16 kD antigen. Results show that
the generation of humoral immune response
by this antigen may be implicated in the
detection of latent tuberculosis (Beck et al
2005). Some workers have studied the
antigenicity and cross reactivity of this
protein antigen (Jurcevic et al 1996,
Wilkinson et al 1998) which showed that
16kD has at least four distinct B-cell epitopes
localized within the three regions (Verbon et
al 1992). Timm et al (2006) showed that
multidrug-resistant -deficient clinical
isolate of is
unimpaired for replication in macrophages.

Und er goin g the d or mancy an d
subsequent survival of in
tuberculosis infection is a major impediment
to treat this deadly disease effectively. It is
well known fact that during the dormancy,
drugs fail to function completely (Dickinson
and Mitchison 1981). Because of this reason,
the dormant and its survival
and persistence despite multi drug therapy
(MDT), have drawn proper attention of
researchers. Several works have been done in
past few years to study the survival
mechanisms of MTB during dormancy.
Findings clearly showed that sHSP16.3 is a
potentially important component which

acr1
Mycobacterium tuberculosis

M. tuberculosis

M. tuberculosis
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facilitates the survival of
during prolonged periods of infection (Yuan
et al 1996, 1998; Hu and Coates1999).

sHSP16.3 is encoded by
gene which is also known as Rv2031c. Its
standard name is (Cole et al 1998). The
effect of various factors on expression of
gene has been studied. One of these factors is
hypoxia or oxygen deprivation and it has
been shown that sHSP16.3 is a hypoxia
induced proteins and accumulates during
infection of macrophages (Yuan et al 1996,
1998; Cunningham and Spreadbury 1998,
Sherman et al 2001). Desjardin and co-
workers (2001) suggested that is
induced in aerobic conditions. In addition,
reactive nitrogen intermediates (RNIs) has
also been reported to induce expression of
this gene to a greater extent (Garbe et al 1999).
All this data indicate that is hypoxia and
RNI-induced gene that may be regulated via
overlapping signalling pathways. Despite
t hi s impor t ant k nowle dg e , act u a l
mechanisms of activation are still unknown
(Ohno et al 2003). A series of experiments
showed that is a two component
regulatory system that controls the
expression of gene during the hypoxic
conditions (Das Gupta et al 2000, Sherman et
al 2001). It has also been proposed that
gene has only one operon including a
putative two component transcription
regulator (Sherman et al 2001).
Further studies showed that the gene of

is present in a locus which
comprises of two USPs namely the
carbohydrate kinase and a DevS like sensor
kinase, Rv2027c (O'Toole et al 2003). Before
the discovery of two component regulatory
system, it was thought that stress-responsive
sigma factor is the key regulator of the
expression of MTB sHSP16.3 (Manabe et al
1999) while Sherman and coworkers (2001)
reported that is not the sole regulator of

M. tuberculosis

M. tuberculosis
hspX

acr
hspX

hspX

hspX

dosR/devR

hspX

hspX

dosR/devR
hspX

M. tuberculosis

sigF

sigF

gene . One interesting study shows that
deletion of gene of causes
increased bacterial growth (Hu et al
2006). In contrast, deletion of (the gene
that controls ) has been reported to cause
hypervirulence in mouse models and in
activated macrophages (Parish et al 2003).

Acr2 is another novel member of the
-crystallin family of molecular chaperones

an d sm al l h ea t s h oc k p r o t e i n o f
that is encoded by gene

(Rv0251c/ / ) (Stewart et al 2002).
also possesses an gene identical

with that of H37Rv (Garnier et
al 2003).

The 18 KD small heat shock protein Acr2
which is also referred to as HrpA (Heat stress
induced ribosome binding protein A) has
been detected in the ribosomal fractions of

when subjected to heat
treatment (Ohara et al 1997). Several lines of
evidences indicate that the regulation of
is multifactorial and complex. Various factors
have been studied which significantly
induced the expression of , amongst
which sodium dodecyl sulfate (SDS),
starvation conditions, palmitic acid, uptake
by naive and activated macrophages and
oxidative stress produced by exposure to
diamide or hydrogen peroxide and heat
shock at 45°C are prominent (Manganelli et al
2001, Schnappinger et al 2003). On the basis of
induction studied using different factors,
has been included in a group of seven

genes that are significantly up-
regulated in response to multiple stresses.
The expression of this key protein Acr2 was
significantly down-regulated by the heat
shock repressor protein HspR (Stewart et al
2002) and by a two-component system (TCS)
called during the logarithmic growth
in liquid medium (Walters et al 2006) whereas

hspX
hspX M. tuberculosis

in vivo
dosR

hspX

M. tuberculosis acr2
hrpA hsp20

M. bovis acr2
M. tuberculosis

M. bovis BCG

acr2

acr2

acr2

M. tuberculosis

phoPR

Small Heat Shock Protein Acr2
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SigE and SigH are alternative sigma factors
that down-regulates the expression of
(Manganelli et al 2002, Raman et al 2001).
Recent studies by Pang and Howard (2007)
have shown that the expression of may
positively or negatively be regulated by
a two-component system in

. Homology studies show that
Acr2 has 30% amino-acid sequence similarity
to the Acr1/sHSP16.3 encoded by

/ /Rv2031c of . The
quantum of similarity can increase to 41 %
depending upon comparison of residues
present in the core of -crystallin domain
(Stewart et al 2002).

The biological role of Acr2 is not
completely known. However, several efforts
have been made. In the sequence of
experiments, Ohara and co-workers (1997)
showed that Acr2 may promote the
stabilization of 30S subunit of the ribosome at
elevated temperature and thereby facilitates
initiation of translation. It was observed that

-crystallin 2 ( ) is invariably associated
with pathogenesis of infection
and is expressed at a high level in the mouse
model during both acute and chronic
infection (Stewart et al 2005). Further,
deletion of gene was reported to result in
decrease in the resistance of MTB to oxidative
stress but there is no impairment in growth of
bacilli has been observed in mouse bone
marrow derived macrophages. These
findings demonstrate that both -crystallins
(Acrl and Acr2) contribute to pathogenesis
and persistence of tubercle bacilli (Stewart et
al 2005). Since expression of Acr2 is up
regulated just after entry of
into host cells in response to exposure of host
reactive oxygen intermediates, Acr2 is
postulated as an early immune target that can
contribute in the early recognition of
infection by host (Wilkinson et al 2005).

acr2

acr2

mprAB
M. tuberculosis

hspX acr M. tuberculosis

acr2
M. tuberculosis

acr2

M. tuberculosis
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Small Heat Shock Proteins and other
Mycobacteria

Small heat shock proteins which have
been reported in other mycobacteria viz.

, and are
homologous whose molecular weight
ranging from 10 to 19 kD and show good
immunogenecity. In , presence of
several antigens that act as small heat shock
proteins have been shown. 10 kD sSHP is the
one of major T-cell antigen of which
stimulates peripheral blood T-cells to
produce high levels of antibodies against
itself (Mehra et al 1992, Rojas et al 1997). 15 kD
is another protein antigen identified by Vega-
Lopez and coworkers (1988) in the sera of
patients suffering from leprosy. In the
continuation of the work on sHSPs in other
mycobacteria, Nerland and his group (1988)
have identified an 18 kD protein antigen from

which also belongs to small heat
shock proteins family and bears 30%
sequence identity to the soyabean Hsp18 and
27% to 16 kD antigen of (Lee et
al 1992). Experimental evidences shows that
18 kD protein antigen is present in as
well as in (now considered to be

serovar 1) (Lamb et al 1990).
, , ,

, , and
seem to possess proteins with

homologous sequences (Moudgil et al 1992).
18 kD recombinant protein from the
have been characterized by Hussain et al
(1992). Booth and coworkers (1993)
showed the presence of homologous of 18 kD
antigen of and 19 kD antigen of

in other mycobacteria like
and . Like other

mycobacterial antigens, 18 kD protein
appears to be a potent stimulator of CD4+ T
cell responses, due to having epitopes that are
antigenic to T cells (Mustafa et al 1986, 2000)
and shows MHC Class II-restricted
cytotoxicity (Adams et al 1995).

M. leprae M. avium M. intracellulare acr

M. leprae

M. lepare

M. leprae

M. tuberculosis

M. leprae
M. habana

M. simiae
M. kansasii M. terrae M. avium M.
scrofulaceum M. gordonae M. chelonei
M. intracellulare

M. leprae

M. leprae
M. tuberculosis
M. avium M. intracellulare
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their appropriate cellular compartments.
While significant amount of data about their
chaperone action, induction under hypoxic
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paid to explore their therapeutic relevance.
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of new cost effective anti-mycobacterial
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could also be developed as an efficient
diagnostic targets. However, this demands
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inherent phenomenon occurring during the
interaction between the sHSPs and host
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